Why So Many Meteorites Come From The Same Place
Thanks! Share it with your friends!
URL
Sorry, only registred users can create playlists.
Description
Because of space physics, one faraway asteroid is likely the progenitor of almost a third of all the meteorites on Earth.
Thanks to Skillshare for sponsoring this video: http://skl.sh/MinuteEarth
Jorge and Daniel's awesome new book, "We Have No Idea": https://www.amazon.com/We-Have-No-Idea-Universe/dp/0735211515
Thanks also to our supporters on https://www.patreon.com/MinuteEarth
___________________________________________
If you want to learn more about this topic, start your googling with these keywords:
Asteroid: A rocky body smaller than a planet that is orbiting the sun.
Meteoroid: A smaller rocky body moving in the solar system.
Meteor: A meteoroid that has entered the Earth’s atmosphere.
Meteorite: A meteor that hits the Earth.
Orbital resonance: A force that occurs when orbiting bodies exert a regular, periodic gravitational influence on each other, because of the length of their relative orbits.
Kirkwood Gap: A dip in the distribution of main belt asteroids that correspond to the locations of orbital resonances with Jupiter.
___________________________________________
Credits (and Twitter handles):
Script Writer: David Goldenberg (@dgoldenberg)
Script Editor: Alex Reich
Video Illustrator: Jorge
Video Director: Emily Elert (@eelert)
Video Narrator: Emily Elert (@eelert)
With Contributions From: Henry Reich, Kate Yoshida, Ever Salazar, Peter Reich
Music by: Nathaniel Schroeder: http://www.soundcloud.com/drschroeder
_________________________________________
Like our videos?
Subscribe to MinuteEarth on YouTube: http://goo.gl/EpIDGd
Support us on Patreon: https://goo.gl/ZVgLQZ
And visit our website: https://www.minuteearth.com/
Also, say hello on:
Facebook: http://goo.gl/FpAvo6
Twitter: http://goo.gl/Y1aWVC
And download our videos on itunes: https://goo.gl/sfwS6n
___________________________________________
If you liked this week’s video, we think you might also like:
A terrifying but fascinating look at the destructive power of potential meteorites: http://www.purdue.edu/impactearth/
___________________________________________
References:
Burbine, T., McCoy, T., Meibom, A., Royer, C., Gladman, B., and Keil, K. (2002). Meteoritic Parent Bodies: Their Number and Identification. Asteroids III. 653-667. Retrieved from: http://adsabs.harvard.edu/abs/2002aste.book..653B
Farinella, P., Gonczi, R., Froeschle, Ch., and Froeschle, C. (1993). The Injection of Asteroid Fragments into Resonances. Icarus. 101: 174-187. Retrieved from: http://www.sciencedirect.com/science/article/pii/S001910358371016X
Fieber-Beyer, S., Gaffey, M., Bottke, W., and Hardersen, P. (2015). Potentially hazardous Asteroid 2007 LE: Compositional link to the black chondrite Rose City and Asteroid (6) Hebe. Icarus. 250: 430-437. Retrieved from: http://www.sciencedirect.com/science/article/pii/S0019103514007088
Gaffey, M. and Gilbert, S. (1998). Asteroid 6 Hebe: The probable parent body of the H-type ordinary chondrites and the IIE iron meteorites. Meteoritics and Planetary Science. 33: 1281-1295. Retrieved from: http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1998.tb01312.x/abstract
Vokrouhlicky, D., and Farinella, P. (2000). Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature. 407: 606-608. Retrieved from: https://www.nature.com/nature/journal/v407/n6804/full/407606a0.html
Moons, M. and Morbidelli, A. (1995). Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases. Icarus. 114: 33-50. Retrieved from: http://www.sciencedirect.com/science/article/pii/S001910358571041X
Burbine, Thomas. (2017). Assistant Professor of Astronomy, University of Massachusetts. Personal Communication.
Thanks to Skillshare for sponsoring this video: http://skl.sh/MinuteEarth
Jorge and Daniel's awesome new book, "We Have No Idea": https://www.amazon.com/We-Have-No-Idea-Universe/dp/0735211515
Thanks also to our supporters on https://www.patreon.com/MinuteEarth
___________________________________________
If you want to learn more about this topic, start your googling with these keywords:
Asteroid: A rocky body smaller than a planet that is orbiting the sun.
Meteoroid: A smaller rocky body moving in the solar system.
Meteor: A meteoroid that has entered the Earth’s atmosphere.
Meteorite: A meteor that hits the Earth.
Orbital resonance: A force that occurs when orbiting bodies exert a regular, periodic gravitational influence on each other, because of the length of their relative orbits.
Kirkwood Gap: A dip in the distribution of main belt asteroids that correspond to the locations of orbital resonances with Jupiter.
___________________________________________
Credits (and Twitter handles):
Script Writer: David Goldenberg (@dgoldenberg)
Script Editor: Alex Reich
Video Illustrator: Jorge
Video Director: Emily Elert (@eelert)
Video Narrator: Emily Elert (@eelert)
With Contributions From: Henry Reich, Kate Yoshida, Ever Salazar, Peter Reich
Music by: Nathaniel Schroeder: http://www.soundcloud.com/drschroeder
_________________________________________
Like our videos?
Subscribe to MinuteEarth on YouTube: http://goo.gl/EpIDGd
Support us on Patreon: https://goo.gl/ZVgLQZ
And visit our website: https://www.minuteearth.com/
Also, say hello on:
Facebook: http://goo.gl/FpAvo6
Twitter: http://goo.gl/Y1aWVC
And download our videos on itunes: https://goo.gl/sfwS6n
___________________________________________
If you liked this week’s video, we think you might also like:
A terrifying but fascinating look at the destructive power of potential meteorites: http://www.purdue.edu/impactearth/
___________________________________________
References:
Burbine, T., McCoy, T., Meibom, A., Royer, C., Gladman, B., and Keil, K. (2002). Meteoritic Parent Bodies: Their Number and Identification. Asteroids III. 653-667. Retrieved from: http://adsabs.harvard.edu/abs/2002aste.book..653B
Farinella, P., Gonczi, R., Froeschle, Ch., and Froeschle, C. (1993). The Injection of Asteroid Fragments into Resonances. Icarus. 101: 174-187. Retrieved from: http://www.sciencedirect.com/science/article/pii/S001910358371016X
Fieber-Beyer, S., Gaffey, M., Bottke, W., and Hardersen, P. (2015). Potentially hazardous Asteroid 2007 LE: Compositional link to the black chondrite Rose City and Asteroid (6) Hebe. Icarus. 250: 430-437. Retrieved from: http://www.sciencedirect.com/science/article/pii/S0019103514007088
Gaffey, M. and Gilbert, S. (1998). Asteroid 6 Hebe: The probable parent body of the H-type ordinary chondrites and the IIE iron meteorites. Meteoritics and Planetary Science. 33: 1281-1295. Retrieved from: http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1998.tb01312.x/abstract
Vokrouhlicky, D., and Farinella, P. (2000). Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature. 407: 606-608. Retrieved from: https://www.nature.com/nature/journal/v407/n6804/full/407606a0.html
Moons, M. and Morbidelli, A. (1995). Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases. Icarus. 114: 33-50. Retrieved from: http://www.sciencedirect.com/science/article/pii/S001910358571041X
Burbine, Thomas. (2017). Assistant Professor of Astronomy, University of Massachusetts. Personal Communication.
Post your comment
Comments
Be the first to comment